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Recursive Sequences

Introduction

In mathematics, we typically use the word pattern to describe a rule or property that relates different

objects (numbers, data, shapes, etc.).

Warm-Up

Identify the following patterns:

i) 1, 3, 5, 7, 9, ...

ii) 1, 2, 4, 8, 16, ...

iii) 1, 3, 7, 15, 31, ...

iv) Blue, Euclid, Dilemma, Amicable, Elf, Floor, Roof, Fort, ...

Warm-Up Solutions

i) Every number is obtained by adding 2 to the previous number.

ii) Every number is obtained by multiplying the previous number by 2.

iii) Every number is obtained by multiplying the previous number by 2 and adding 1. There

are other possible solutions: eg. the difference between terms increases by a factor of 2.

iv) The last letter of every word is the first letter of the next word. Further, the second last

letter of every word is the second letter of the next word. Eg. from ‘Blue’ , take ‘ue’, flip

them to get ‘eu’ and then ‘Euclid’ starts with ‘eu’.
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Sequences

A sequence is an ordered list of numbers. For example,

1, −2, 3, −4, 5, −6, 7

is a finite sequence of length 7. We can also have infinite sequences, such as

1, −2, 3, −4, 5, −6, 7, −8, 9, −10, 11, ...

The ... at the end of the sequence indicates that it will continue indefinitely, but we cannot assume

that the rest of the sequence follows the same pattern. For example, 1, 2, 3, 4, 5, ... might continue

as

1, 2, 3, 4, 5, 8, 7, 16, 9, 32, ...

do you notice a new pattern?

The nth number in a sequence is called the nth term of that sequence. In the above sequence, the

1st term is 1, the 2nd term is 2, and the 6th term is 8.

To describe sequences, we use a variable (usually a letter, eg. t for term) and a subscript to indicate

the term number. For example,

{tn} = t1, t2, t3, t4, t5, t6, t7, ...

is a sequence of unknown values. {tn} is used to represent the entire sequence (rather than writing

out t1, t2, ... every time).

Exercise 1

Find the 6th term in each of the sequences.

i) the sequence which starts with 1 and increases by 1 every term

ii) tn = 1
n

for n ≥ 1

iii) {an} = {n+ 3}

iv) 1, 3, 5, 7, 9, ...
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Exercise 1 Solution

i) The first 6 terms of this sequence are 1, 2, 3, 4, 5, 6 so the 6th term is 6.

ii) The 6th term is t6 = 1
6
.

iii) This is the same as writing an = n+ 3 for n ≥ 1. The 6th term is a6 = 6 + 3 = 9.

iv) This is a trick question! We cannot find the 6th term of this sequence since we have not

defined anything beyond the first five terms.

When working with sequences, the letter n represents the term number. Thus, if we have a term tn in

a sequence, tn−1 is the previous term, and tn+1 is the next term. Similarly, we can use an expression

in terms of n to denote a different term number: eg. t2n is the 2nth term in the sequence.

Exercise 2

Let {tn} = {3n+ 5}.

a) Find the first five terms of this sequence.

b) If n = 4, find tn, t2n and t3n+5.

c) True or False: tn+3 = tn + 9 for all n ≥ 1.

Exercise 2 Solution

a) Using the formula tn = 3n+ 5, we find that the first five terms are 8, 11, 14, 17, 20.

b) n = 4, 2n = 2(4) = 8 and 3n+ 5 = 3(4) + 5 = 17 so

tn = t4 = 3× 4 + 5 = 17

t2n = t8 = 3× 8 + 5 = 29

t3n+5 = t17 = 3× 17 + 5 = 56

c) True: for all n,

tn+3 = 3(n+ 3) + 5 = 3n+ 9 + 5 = (3n+ 5) + 9 = tn + 9
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Different Types of Sequences

Sometimes, we define sequences as being an ordered list of objects (rather than numbers).

This allows us to create sequences of shapes, sequences of words, even sequences of sequences.

By doing so, we extend the concept of sequences to study patterns in the real world: there

are sequences of notes in music, sequences of operations in computing, sequences of events in

history, etc. Can you think of a sequence in which appears in your day-to-day life?

Let {tn} = 1, 3, 5, 7, ... be the sequence of odd whole numbers. We can describe this sequence in

different ways:

• Words: the sequence of odd whole numbers

• Listing out the terms: t1 = 1, t2 = 3, etc.

• Closed-form formula: tn = 2n− 1 (also called closed formula or closed form)

• Recursive formula: tn = tn−1 + 2

The difference between a closed-form formula and a recursive formula is that, when using the closed

form, we are able to calculate the nth term directly (the only variable is n). On the other hand, a

formula is called recursive if it uses previous terms in the sequence (eg. if tn is calculated using tn−1

or tn−2).
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Recursive Sequences

Introduction to Recursion

Recursion is the concept of defining something in terms of itself. For example, a dictionary provides

a recursive definition of the English language since every word is defined using other English words.

Fractals - Example of Recursion in Mathematics

Fractals are complex recursive geometric shapes which have a repeating pattern when ‘zooming

in’.

Retrieved from: Wikicommons Retrieved from: Wikipedia Image by Beojan Stanislaus,
retrieved from: Wikicommons

For example, here is a video showing what happens when you zoom into the Mandelbrot set.

These types of patterns occur throughout nature:

Retrieved from: Pexels Image by Ken Douglas, retrieved from: Flickr Image by Tin.G, retrieved from: Flickr

When we think about patterns, eg. 1, 2, 4, 8, 16, ... from the warm-up, we often consider how to

obtain a number using previous numbers. That is, we often look at patterns, and thus sequences,

from a recursive perspective.

A recursive sequence is a sequence in which each term can be defined using previous terms in the

sequence. The formula relating a term to the previous terms is called a recursive formula.
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For example, here are some recursive formulas:

• an+1 = an (for n ≥ 1)

• bn = bn−1 + 967 (for n ≥ 2)

• cn+1 = n× cn (for n ≥ 94)

• dn+1 = d1 + dn−1 − dn−6 (for n ≥ 7)

The same sequence can have different recursive formulas. If {tn} = 1, 2, 3, 4, ... is the sequence of

positive integers then tn = tn−1 + 1 and tn = tn−2 + 2 are both valid recursive formulas.

In order to properly define a recursive sequence, we need to know at least one of the terms. Typically

we do this by providing the first term in the sequence. We also need ensure that the sequence we are

defining makes sense. Formally, we say a sequence is well-defined if every term is uniquely defined.

Example 1

Determine whether the following sequences are well-defined:

i) {Fn} defined by Fn = Fn−1 + Fn−2 for n ≥ 3.

ii) {an} defined by a1 = 1 and a2n = 2an for n ≥ 1.

iii) {an} defined by a1 = 1, a2n = 2an for n ≥ 1, an = an−2 + 3 for n ≥ 3.

iv) {xn} defined by x2n−1 = 2n− 1 for n ≥ 1 and x2n = 2xn for n ≥ 1.

Example 1 Solution

i) No. F1 is not defined.

ii) No. a3 is not defined.

iii) No. a4 = a2 + 3 = 2a1 + 3 = 2× 1 + 3 = 5 and a4 = 2a2 = 2× 2a1 = 4× 1 = 4 but 4 6= 5.

iv) Yes. If n is odd, we can use the first formula to find xn = n. If n is even, use the second

formula to find xn (using xn
2
).
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Closed-form Formula

Finding a closed-form formula when we only know the recursive definition of a sequence is very tricky.

When faced with this type of problem, the first step is to write out the start of the sequence and

try to guess a formula. If that doesn’t work, we can try to ‘unroll’ the recursive formula to get more

insights about the sequence.

Example 2

Find a closed-form formula for {tn} where t1 = 9 and tn+1 = tn + 2 for n ≥ 1.

Example 2 Solution

Let’s look at the first few terms:

9, 11, 13, 15, 17, ...

We are adding 2 to each to each term to get the next, but how can we guess the closed form?

Let’s work backwards using the recursive formula:

tn = tn−1 + 2

= (tn−2 + 2) + 2

= (((tn−3 + 2) + 2) + 2)

...

= ((((((t1 + 2) + 2) + ...) + 2) + 2) + 2)

How many times will we be adding 2 to t1?

n 2 3 4 5 6 7

# of times we add 2 1 2 3 4 5 6

We can now reasonably guess that

tn = t1 + 2(n− 1) = 9 + 2(n− 1) = 7 + 2n

Our final answer is tn = 2n + 7. Note we can verify this answer by checking that it satisfies

the original definition of the sequence:

t1 = 7 + 2(1) = 9

tn = 7 + 2n = 7 + 2(n− 1) + 2 = tn−1 + 2

7



Arithmetic Sequences

An arithmetic sequence is a sequence where the difference between any two (consecutive) terms

is constant. For example, assuming the following patterns continue,

• 2, 5, 8, 11, 14, ... we say that the common difference is 3

• 4, 4, 4, 4, 4, ... has common difference 0

• 9, 7, 5, 3, 1, ... has common difference −2

Suppose {tn} is an arithmetic sequence and let d be its common difference. Then {tn} satisfies the

recursive formula

tn = tn−1 + d

(for n ≥ 2). A starting term t1 and a common difference d uniquely define an arithmetic sequence:

t1, t1 + d, t1 + 2d, t1 + 3d, t1 + 4d, t1 + 5d, t1 + 6d, t1 + 7d, ...

We can use a technique similar to the one in Example 2 in order to find the general closed-form of

an arithmetic sequence:

tn = t1 + d× (n− 1)

We can check that

t1 = t1 + (1− 1)× d = t1

tn = t1 + d× (n− 1) = t1 + d× (n− 2) + d = tn−1 + d

Exercise 3

On the first day of registration for the Math Squares grade 7/8 class, 19 students register. On

every following day, 9 students register.

a) How many days will it take for the class reach 40 students?

b) Let tn be the number of students after day n, where t1 = 19. Find a recursive formula

for tn.

c) Find a closed form for tn.

d) If the class has 900 available seats, how many days will it take to fill up?
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Exercise 3 Solution

a) Using the following table,

n # of students after day n

1 19

2 28

3 37

4 46

we see that it will take 4 days for the class to reach 40 students.

b) Since 9 students register every day (after the first), tn+1 = tn + 9 for n ≥ 1.

c) From part b, {tn} is an arithmetic sequence. Therefore, a closed-form formula for tn is

tn = t1 + d(n− 1) = 19 + 9(n− 1) = 10 + 9n

d) We want to find the first tn such that tn ≥ 900. Using part c, this is the same as finding

the first n such that

10 + 9n ≥ 900

We can add and subtract from both sides of an inequality in the same way we can do so

with an equation. Rearranging, the above inequality is equivalent to

9n ≥ 890

Notice 9× 100 = 900 so 9× 99 = 900− 9 = 891 and 9× 98 = 891− 9 = 882. Therefore,

the smallest n such that tn ≥ 900 is n = 99 and so the class will fill up on the 99th day.
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Geometric Sequences

A geometric sequence is a sequence where the ratio between consecutive terms is constant. For

example,

• 2, 4, 8, 16, 32, ... we say that the common ratio is 2

• 4, 4, 4, 4, 4, ... has common ratio 1

• 9, 3, 1, 1
3
, 1

9
, ... has common ratio 1

3

Suppose {tn} is a geometric sequence with common ratio r. We obtain the recursive formula

tn+1 = rtn

A geometric sequence is characterized by its first term t1 and common ratio r. Given these two

values, the first terms of the corresponding geometric sequence are

t1, t1r, t1r
2, t1r

3, t1r
4, t1r

4, t1r
5, ...

Recall: rn is r × r × ...× r where r is multiplied by itself n times.

Once again, let’s find a closed form for this geometric sequence. According to the pattern shown in

the first 6 terms, the closed-form formula for a geometric sequence is

tn = t1r
n

This is consistent with the recursive formula for a geometric sequence since

t1 = t1r
0 = t1

tn = rtn−1 = r × t1rn−1 = t1r
n

Exercise 4

a) Let {an} be a geometric sequence with a2 = 20 and a4 = 125. If a1 > 0, find a1.

b) Let {bn} be a geometric sequence. If b1 = b3 = 9, find all possible values of b2022.

c) Let {cn} be a geometric sequence with common ratio 99. If c2 = 99, find a closed formula

for cn.

d) Let {dn} be a geometric sequence and let a be a nonzero whole number. Is {dan} geometric

(an = a× n)? If so find its common ratio, otherwise find a counterexample.
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Exercise 4 Solution

a) Let r be the common ratio. We have

25

4
=

125

20
=
a4
a2

=
a1r

3

a1r
= r × r

Since a1 > 0 and a2 > 0, we must have r > 0. Therefore, r = 5
2
. We can conclude

a1 =
a2
r

= 20× 2

5
= 8

b) Let r be the common ratio. Since b3 = b1, r
2 = 1 so r = ±1. If r = 1 then every term in

the sequence is equal to 9. If r = −1 then every odd term in the sequence is equal to 9

and every even term is equal to −9. We can conclude that b2022 could be either 9 or −9.

c) c1 = c2
99

= 1. Therefore, a closed formula for cn is

cn = 99n−1

d) Let r be the common ratio of {dn}. For any n ≥ 1, we have

da(n+1)

dan
=
d1r

a(n+1)

d1ran
=
ran × ra

ran
= ra

therefore {dan} is geometric with common ratio ra.

There are plenty of other sequences (or family of sequences) throughout mathematics. Check

out the Online Encyclopedia of Integer Sequences, an encyclopedia of all integer sequences

which mathematicians consider interesting (an integer is either a negative whole number, 0, or

a positive whole number).
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Fibonacci Sequence

Perhaps the most famous example of a recursive sequence is the Fibonacci sequence:

The Fibonacci sequence {Fn} = F1, F2, ... is defined by F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for

n ≥ 3. It starts with

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

The oldest record of this sequence is in Indian literature around 200 B.C. It is named after the Italian

mathematician Fibonacci, who introduced the sequence to Western society through a problem about

rabbit population growth. However, this sequence only became popular in the 19th century when

mathematicians started figuring out its mathematical properties. The sequence is now commonly

used as an example of how mathematical patterns appear in nature (more on that below).

The closed form of the Fibonacci sequence is:

Fn =
1√
5

(
1 +
√

5

2

)n

− 1√
5

(
1−
√

5

2

)n

Try calculating F3 using this formula. Due to the complexity of the above formula, we typically

prefer to work with the recursive formula instead.

The Fibonacci numbers have a number of ‘nice’ identities and can be used to illustrate recursive

concepts in combinatorics and number theory. For example, every natural number can be uniquely

written as a sum of non-consecutive natural numbers.

Exercise 5

Calculate 1 + F1 + ...+ Fn for n = 1, 2, 3, 4, 5. Do you notice a pattern?

Exercise 5 Solution

n 1 2 3 4 5

1 + F1 + ...+ Fn 2 3 5 8 13
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Each of these numbers is a Fibonacci number! That is, assuming the pattern continues,

1 + F1 + ...+ Fn = Fn+2 for n ≥ 1

We can check that this identity makes sense:

1 + F1 + ...+ Fn + Fn+1 = (1 + F1 + ...+ Fn) + Fn+1 = Fn+2 + Fn+1 = Fn+3.

The Golden Ratio

Consider the table

n Fn Fn+1
Fn+1

Fn

1 1 1 1

2 1 2 2

3 2 3 1.5

4 3 5 1.6666...

5 5 8 1.6

6 8 13 1.625

7 13 21 1.615384

8 21 34 1.6190476

The last column is getting closer and closer (converging) to a number called the golden ratio. We

use the greek letter φ to represent this number:

φ :=
1 +
√

5

2
= 1.61803398875...

As the Fibonacci numbers get bigger, they behave almost like a geometric sequence with common

ratio φ. In fact, we can rewrite the closed form of the Fibonacci numbers as

Fn =
φn − (1− φ)n√

5
=

1√
5
φn − 1√

5
(1− φ)n

(1− φ)n approaches 0 as n gets large. Therefore, for large n, Fn ≈ 1√
5
φn.

φ itself has a few cool properties. We can verify that φ satisfies:

φ = 1 +
1

φ
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Therefore,

φ = 1 +
1

1 + 1
φ

= 1 +
1

1 + 1
1+ 1

φ

= 1 +
1

1 + 1
1+ 1

1+ 1

1+ 1
...

The Fibonacci Spiral & The Golden Spiral

Let’s construct a spiral using the Fibonacci numbers. Start with two 1 × 1 squares placed beside

each other. Next, continue and add Fn × Fn squares to obtain the following figure

Image by Romain, retrieved from Wikipedia

This can be infinitely extended to form the famous Fibonacci spiral, sometimes called the golden

spiral. This spiral can be seen throughout nature, art, and architecture:

Retrieved from Wikicommons Retrieved from Wikipedia Retrieved from Prestige
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